
 

 

  
Abstract—The article deals with the probabilistic analysis of the 

reliability of a compressed steel column with hollow thin-walled 
rectangular cross-section. The stochastic computational model is 
based on the non-linear finite element method and numerical 
simulation Latin Hypercube Sampling method. Initial geometric 
imperfections were introduced according to the local and global 
buckling modes. Statistical analysis of the load carrying capacity was 
performed for four variants of wall thicknesses. The influence of the 
nominal thickness of the wall of the hollow rectangular cross-section 
on the ultimate limit state was studied. 
 

Keywords—ANSYS, buckling, column, imperfection, reliability, 
stochastic, structure.  

I. INTRODUCTION 
hin-walled slender members are frequently used as 

structural elements in the field of civil engineering [1]. 
The low self weight of steel structures is an important 
prerequisite for economical and reliable design of tall 
buildings, such as skyscrapers, high-rise buildings, masts, 
towers and structures with spans over 30 meters, such as roof 
structures of halls, stadiums, bridges and special roofing and 
ceilings. Thin-walled structural elements are highly valuable in 
the management of installations, such as, for the distribution of 
heat, water, electricity, sprinklers and ventilation [2]. Thin-
walled steel box structures are utilized in combination with 
prestressed rods.  

Variability of design solutions and the rich selection of 
optimum geometric and material parameters of members of 
thin-walled steel structures provides the prerequisites for 
efficiently designed load bearing elements to transfer loading 
as efficiently as possible. Material savings, however, come at a 
price, because the low weight of the structure could mean an 
increased failure probability due to loss of stability. It should 
be noted that slender thin-walled members cannot be used in 
plastic design [3]. Local buckling occurs before the so-called 
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full-plastic moment is reached in bent thin-walled elements 
[4], [5]. Due to the interaction of local and global buckling 
loss of load carrying capacity could occur before the 
development of plastic zones in compressed thin-walled 
elements. Loss of stability of structural elements may or may 
not be fatal for the whole structure, but always presents a 
negative phenomenon, which must be prevented through 
detailed static and stability analysis of the structure. 

 

 
 
Fig. 1 Local buckling of thin-walled open I-section 
 

 
 
Fig. 2 Local buckling of thin-walled hollow rectangular section 
 
Demonstrating the safety and reliability of thin-walled steel 

beam structures is normally based on static and stability 
analysis utilizing computer modelling of real structural 
systems using the finite element method [6]. The types of finite 
elements and methods of solution are selected according to the 
geometry of the thin-walled elements and the presumed failure 
mechanism [1]. The mode of failure and static resistance of the 
element depends primarily on whether the cross-section is 
open or closed. In open thin-walled compressed I-section 
columns the flange has a tendency to buckle before the web, 
which is supported on all sides, see Fig. 1. However, in closed 
sections, for e.g. hollow rectangular sections, both the flanges 
and webs act as internal elements and local buckling of these 
elements is dependent on their respective width to thickness 
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ratio. Local buckling occurs along the entire length of the 
member and a “checkerboard” wave pattern is developed on 
the member, see Fig. 2. Failure mechanisms and stress of 
compressed thin-walled elements are very sensitive to initial 
local and global imperfections, which reduce the load carrying 
capacity of the compressed elements [7]. The behaviour of 
compressed steel columns in structural systems is always 
dependent on initial imperfections [8]. 

In the presented article the thin-walled column with hollow 
rectangular cross-section is modelled using shell finite 
elements and the computational programme ANSYS. The load 
carrying capacity of the column is analysed using the 
geometric and physical non-linear solution. Randomness of 
initial imperfections is taken into consideration. The influence 
of change in the wall thickness of the hollow rectangular cross-
section on the load carrying capacity of the column was 
studied. The article builds on the uncertainty quantification 
and validation of simulation experiments of slender steel 
structures [9], [10]. Reliability analysis is performed using the 
numerical simulation Latin Hypercube Sampling method [11], 
[12]. 

II. COMPRESSED THIN-WALLED COLUMN 
The hollow rectangular cross-section comprises of walls 

mutually connected in the cross-section corners, see Fig. 3. 
During axial compression of a thin-walled cross-section the 
individual walls mutually influence each other and buckling 
occurs in the walls. The walls with higher slenderness buckle 
sooner, and buckling is then transferred to the walls with lower 
slenderness. Elastic built-in is provided to the walls by the 
longitudinal edge prior to local buckling in the wall with lower 
slenderness. The problem of columns integrated into a 
structural system is more complicated and it is necessary to 
take into consideration stiffness parameters of the column ends 
and the manner in which loading is transferred from the 
structure to the column during analysis. 

 
 
Fig. 3 Geometry of hollow rectangular cross-section 
 
Thin-walled plate structures, which are subjected to axial 

compression, may have many different modes of buckling, see, 
e.g. [13]. Such structures are still able to sustain load after the 
local buckling mode. Due to local buckling there is a decrease 

in the stiffness of the section and a subsequent reduction in the 
load carrying capacity with regard to the non-locally buckled 
section. Global buckling mode results in the collapse of thin-
walled structures. Destruction of the structure is accelerated by 
the the phenomenon of interaction between both buckling 
modes. The interaction of global and local buckling modes is a 
very interesting problem of great importance. The principles of 
the classical theory of elasticity, which presumes a non-
deformable cross section, cannot thus be used for the analysis 
of limit states. During limit state the hollow rectangular cross-
section of the thin-walled column is divided into the non-
effective zones and the effective zones, see Fig. 4. 

 

 
 
Fig. 4 Effective zone of hollow rectangular cross-section 
 
In Fig. 4, the cross-sectional area that resists the loading is 

marked by the white colour. Only the zones close to the cross-
section corners resist the loading, whilst the zones influenced 
by buckling loose their resistance. The deformation of member 
axis and the deformation of slender walls of the cross-section 
have a great influence on the ultimate limit state, therefore it is 
necessary to apply advanced non-linear models of finite 
elements for the solution of the load-carrying capacity. These 
models must always take into consideration the influence of 
initial imperfections, see Fig. 5. 

Initial imperfections cause bending of the member as a 
whole and buckling of its walls immediately at the onset of 
loading with both phenomena proceeding in permanent 
interaction. Stress of slender walls changes during loading. 
The stress changes from zero to the values initiating and 
developing the plastic zones and permanent deformations. The 
internal side of the cross-section is compressed more than the 
external one, where buckling propagates at a lower speed. The 
load carrying capacity of the member is always lower than the 
critical load carrying capacity. The load carrying capacity of 
its walls is frequently substantially higher (due to the so-called 
post-critical load carrying capacity reserve) than the critical 
loading. 
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Fig. 5 FE model with elements SHELL 181  

III. CALCULATION MODEL 
The problem of stability loss was studied on a thin-walled 

member of length L=10 m with imperfections. The nominal 
plate thickness was considered in four variants t∈{10, 14, 18, 
22} mm. The nominal cross-section width b=1 m and nominal 
cross-section height h=0.5 m were considered, see Fig. 3. 

The programme ANSYS was used to analyse the problem. 
With regard to the symmetry of the analysed member and to 
the computational demand, only one half of the member length 
was modelled. The plane of symmetry in x=5m was considered 
to constrain translation in the x direction, and to constrain 
rotations around axes y and z. Hinged boundary conditions 
were considered on both ends of the member, i.e. x=0 and x=L. 
This boundary condition enables free rotation and fixed 
translation. 

Modelling of the column geometry was performed using a 
four-node shell element provided in [6] as SHELL 181, which 
makes solution of material and geometrically non-linear 
problems feasible. Provision was made in calculation for the 
non-linear material behaviour by means of a bi-linear 
kinematics model without stiffening. 

Finite element meshes were selected in such a manner to 
enable description of local buckling of walls using the model, 

see Fig. 5 and Fig. 6. The column was modelled using 2012 
finite elements with a total of 2050 nodes. The model has 
12176 degrees of freedom. The non-linear finite element 
analysis of the load carrying capacity was performed using the 
incremental Euler method and the Newton-Raphson method 
[6]. The size of loading step was automatically adjusted within 
the interval 0.00001-0.1 of the sought after load carrying 
capacity. The load carrying capacity was defined as the 
loading at which the determinant of the structure’s tangential 
stiffness matrix equals zero with prescribed accuracy. 

 
 

 
Fig. 6 Global and local imperfections 

IV. STOCHASTIC CALCULATION MODEL 
Finite element methods and optimization computer 

techniques are a common part of the structural design of 
reliable and economical structures [14]. Modelling and 
numerical simulation should always be based on experimental 
research [15]. Numerical simulation of loading tests on 
computers based on experimental research substitute actual 
loading tests, which are economically very demanding [16]. A 
possible method for the evaluation of the reliability of the 
column is to consider the load carrying capacity as a random 
output variable. The outputs of the computational model can 
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be evaluated as random variables if direct probabilistic 
methods [17] or advanced numerical simulation methods, such 
as Monte Carlo [11], [12], are used. Great attention should be 
paid to initial imperfections, which have a significant effect on 
the ultimate limit state. 

Initial imperfections are generally random quantities, the 
statistical characteristics of which would be obtained from the 
measurement of a large number of members. Performing a 
higher number of tests on real members, i.e. with regard to 
imperfection, would be demanding economically and in 
production. The measurement of a small number of samples 
would yield insufficient data for reliable evaluation of the 
statistical results with regard to the expected variance and 
heterogeneity of imperfections. 

The first random quantity considered in the analysis was the 
yield strength. The yield strength of steel grade S235 was 
expressed using a histogram [18] with mean value of 
285.74 MPa, standard deviation 23.57 MPa, and with small, 
practically negligible, skewness. 

The second imperfection that could have a substantial effect 
on the load carrying capacity is the initial curvature of the 
member. The shape of curvature was introduced in the form of 
a half-wave of the sine function within the interval, for both 
the initial deflection in the plane of the primary bending in the 
direction of the z-axis (random amplitude e01), and for 
buckling in the direction of the y-axis (random amplitude e02). 
Gaussian probability density function with mean value of zero, 
i.e. a perfectly straight member, was introduced for amplitudes 
e01, e02. The standard deviation for the two random quantities 
was introduced as Se01=Se02=6 mm according to the rule 2SX, 
see, e.g. [18]. 

Initial buckling of the member walls was introduced in the 
model as scaled eigenmodes obtained a priori from an elastic 
buckling analysis, see Fig. 5. It was considered as a random 
quantity e07 with mean value me07= 0, and standard deviation 
Se07= 1.67 mm. 

 

 
 
Fig. 7 Out-of-squareness imperfections 
 
Another imperfection that has an influence on the load 

carrying capacity is the initial out-of-squareness of walls with 
box cross section, see Fig. 7. Normal distributions with mean 
values equal to 0 mm and standard deviation 
Se03=Se04=1.25 mm were assumed for random quantities e03, 

e04. Similarly, normal distributions with mean values of 0 mm 
and standard deviation Se05=Se06=0.625 mm were assumed for 
quantities e05, e06. The nominal value of wall thickness 
t=12mm was considered as the mean value of the Gaussian 
probability density function. The coefficient of variation of the 
wall thickness was equal to 0.07 in all cases [18]. 

V. STOCHASTIC ANALYSIS OF RESISTANCE  
The load carrying capacity R is the output random quantity. 

The random realizations of the load carrying capacity were 
evaluated using the Latin Hypercube Sampling (LHS) method 
[11], [12]. 400 runs of LHS method were used.  

A. Statistical analysis 
Statistical analysis of the load carrying capacity was 

evaluated for four variants of the wall thickness, see 
histograms in Fig. 8, 9, 10, 11. Each histogram was processed 
using 400 runs of the LHS method. 

 

 
 
Fig. 8 Histogram of load carrying capacity, t=10 mm 
 

 
 
Fig. 9 Histogram of load carrying capacity, t=14 mm 
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Fig. 10 Histogram of load carrying capacity, t=18 mm 
 

 
 
Fig. 11 Histogram of load carrying capacity, t=22 mm 
 

 
 
Fig. 12 Load carrying capacity vs web thickness 
 
It is apparent from Fig. 12 that the curve of mean value is 

convex. The graph of the standard deviation of the load 
carrying capacity is slightly convex to linear. It is impossible 
to determine with certainty whether a similar trend is or is not 
present for skewness and kurtosis, as this trend may be 
burdened with statistical error given by the number of used 

simulation runs of the LHS method. According to standard 
EN1990 the design load carrying capacity can be evaluated as 
0.1 percentile [19]. Design values of the load carrying capacity 
were evaluated as 0.1 percentiles upon approximation of the 
histograms with Gaussian and lognormal probability density 
functions. Both curves of the 0.1 percentiles are convex. The 
design values obtained using the Gaussian probability density 
function are lower than the design values obtained using the 
lognormal probability density function. Design values 
evaluated as 0.1 percentile are approximately thirty to thirty-
five percent lower than the average values. 

B. Sensitivity analysis 
Sensitivity analysis is used to determine how change in an 

input is reflected in the result, output, of a computational 
model [20]. Sensitivity analysis can be used to identify the 
input random variable whose variability has the greatest effect 
on the output [21]. A known and used method of sensitivity 
analysis is based on the evaluation of the partial derivatives of 
the output with respect to input factors [22]. Other methods 
are, for e.g., scatter plots, regression analysis, variance-based 
methods, screening [20]. The selection of the appropriate 
method depends primarily on whether the sensitivity analysis 
is based on a sampling basis or not, see, e.g. [23], [24]. The 
use of sensitivity analysis in structural mechanics is expedient 
in situations where we need to set the parameters of virtual 
experiments in conditions in which the sensitivity of the 
outputs to the estimated factors is the greatest, see, e.g. [25] - 
[29].  

Calculation of the correlation between the input random 
variables and model output is often used as the first method of 
identifying interdependencies of quantities. Evaluation is 
conditioned by the monotone dependence of output variable on 
the input random variable, therefore all realizations of the 
imperfections were considered by the absolute values. It can 
be seen from the sensitivity analysis that the load carrying 
capacity is sensitive to the variability of the plate thickness t, 
and to the variability of yield strength fy. The initial curvature 
of the member axis e01, e02 and geometrical imperfections e03, 
e04, e05, e06, e07 have little influence on the load carrying 
capacity. However, it should be noted that more general 
conclusions on reliability cannot be made on the basis of just 
one study. The sensitivity analysis should be supplemented 
with the so-called variance based sensitivity analysis, which is 
capable of identifying higher order interactions among input 
random quantities and the load carrying capacity [25]. 

 

VI. CONCLUSION 
The statistical and sensitivity analysis of the ultimate limit 

state of a compressed steel column with rectangular thin-
walled hollow cross-section was presented in the article. 
Obtained results of the sensitivity analysis show that the load 
carrying capacity is very sensitive to the variability of the plate 
thickness. Increasing the wall thickness increases the cross-
sectional area, and simultaneously the stiffness of the slender 
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walls against buckling increases, thereby increasing the 
stability of the column. The variability of other initial 
geometric imperfections had a smaller influence on the load 
carrying capacity. Statistical characteristics of the load 
carrying capacity were studied in dependence on change in the 
nominal plate thickness of the cross section. Dependence 
between the mean load carrying capacity and plate thickness 
was slightly non-linear, see the convex curve in Fig. 12. 
Curves of the design load carrying capacities evaluated as 0.1 
percentile were also slightly non-linear. 

The results of the statistical analysis obtained from the 
virtual simulations could be a useful complement to the results 
of real experiments and be used to verify the design 
procedures of thin-walled columns. If the theoretical results 
are verified experimentally, then discussion could be started on 
the acceptability of standardised European prescriptions, 
which utilize the so-called effective cross-sectional area for 
calculation. 
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